Download Recommender Systems And Deep Learning In Python (11.2023). Are you looking for this valuable stuff to download? If so then you are in the correct place. On our website, we share resources for, Graphics designers, Motion designers, Game developers, cinematographers, Forex Traders, Programmers, Web developers, 3D artists, photographers, Music Producers and etc.
With one single click, On our website, you will find many premium assets like All kinds of Courses, Photoshop Stuff, Lightroom Preset, Photoshop Actions, Brushes & Gradient, Videohive After Effect Templates, Fonts, Luts, Sounds, 3D models, Plugins, and much more. Psdly.com is a free graphics and all kinds of courses content provider website that helps beginner grow their careers as well as freelancers, Motion designers, cinematographers, Forex Traders, photographers, who can’t afford high-cost courses, and other resources.
File Name: | Recommender Systems And Deep Learning In Python (11.2023) |
Content Source: | https://www.udemy.com/course/recommender-systems/ |
Genre / Category: | Programming |
File Size : | 4GB |
Publisher: | udemy |
Updated and Published: | November 27, 2023 |
The most in-depth course on recommendation systems with deep learning, machine learning, data science, and AI techniques
Believe it or not, almost all online businesses today make use of recommender systems in some way or another.
What do I mean by “recommender systems”, and why are they useful?
Let’s look at the top 3 websites on the Internet, according to Alexa: Google, YouTube, and Facebook.
Recommender systems form the very foundation of these technologies.
Google: Search results
They are why Google is the most successful technology company today.
YouTube: Video dashboard
I’m sure I’m not the only one who’s accidentally spent hours on YouTube when I had more important things to do! Just how do they convince you to do that?
That’s right. Recommender systems!
Facebook: So powerful that world governments are worried that the newsfeed has too much influence on people! (Or maybe they are worried about losing their own power… hmm…)
Amazing!
This course is a big bag of tricks that make recommender systems work across multiple platforms.
We’ll look at popular news feed algorithms, like Reddit, Hacker News, and Google PageRank.
We’ll look at Bayesian recommendation techniques that are being used by a large number of media companies today.
But this course isn’t just about news feeds.
Companies like Amazon, Netflix, and Spotify have been using recommendations to suggest products, movies, and music to customers for many years now.
These algorithms have led to billions of dollars in added revenue.
So I assure you, what you’re about to learn in this course is very real, very applicable, and will have a huge impact on your business.
For those of you who like to dig deep into the theory to understand how things really work, you know this is my specialty and there will be no shortage of that in this course. We’ll be covering state of the art algorithms like matrix factorization and deep learning (making use of both supervised and unsupervised learning – Autoencoders and Restricted Boltzmann Machines), and you’ll learn a bag full of tricks to improve upon baseline results.
As a bonus, we will also look how to perform matrix factorization using big data in Spark. We will create a cluster using Amazon EC2 instances with Amazon Web Services (AWS). Most other courses and tutorials look at the MovieLens 100k dataset – that is puny! Our examples make use of MovieLens 20 million.
Whether you sell products in your e-commerce store, or you simply write a blog – you can use these techniques to show the right recommendations to your users at the right time.
If you’re an employee at a company, you can use these techniques to impress your manager and get a raise!
DOWNLOAD LINK: Recommender Systems And Deep Learning In Python (11.2023)
FILEAXA.COM – is our main file storage service. We host all files there. You can join the FILEAXA.COM premium service to access our all files without any limation and fast download speed.